

OPERATION MANUAL

HVS-3800HS/S Virtual Link

2nd Edition

FOR-A COMPANY LIMITED

Table of Contents

1. Overview and Features	1
1-1. Overview	1
1-2. Features	1
1-3. About This Manual	1
2. Basics of Hanabi Virtual Link System	2
2-1. Ideal Virtual System	2
2-2. Hanabi Virtual Link System (Video)	3
2-2-1. Using External Chromakey	3
2-2-2. Using Internal Chromakey	4
2-3. Hanabi Virtual Link System (Sensor)	5
2-4. Usage and Ease of Operation Resembling Regular Systems	6
2-4-1. Virtual Line	6
2-4-2. Virtual Component / Dummy XPT	7
2-4-3. Camera Number and Tally Data (Serial Tally)	8
2-4-4. Virtual Crosspoint	8
3. Select a Virtual System Preset	9
3-1. Select a Preset in the Virtual Menu	9
3-2. Details of Virtual Preset1-6	10
3-2-1. Virtual Preset 1	10
3-2-2. Virtual Preset 2	12
3-2-3. Virtual Preset 3	12
3-2-4. Virtual Preset 4	13
3-2-5. Virtual Preset 5	14
3-2-6. Virtual Preset 6	15
3-2-7. Additional Setting	16
3-2-8. List of Virtual Preset Setting Values	17
4. Virtual System Manual Setup	20
4-1. Access to Virtual Setting Menu	20
4-2. Menu Overview	20
4-3. Virtual System Menu	21
4-4. Virtual Line Menu	22
4-4-1. Virtual Line Name Setting	22
4-4-2. Virtual Line Advanced Setting	23
4-5. Virtual Camera Setting	24
4-6. Virtual Component Setting	24
4-7. Virtual Crosspoint Setting	26
4-8. RS422 Setting	27
4-9. Assignment of Virtual Line to M/E Bus Button	28
5. GPI/O and TALLY Setup Menu	29
5-1. Access to Color Logic Setting Menu	29
5-2. COLOR LOGIC Setting Menu	30
5-3. Color Logic Configuration Example	31

1-1. Overview

The Hanabi Virtual Link System software establishes a link between digiStorm Virtual System and FOR-A Hanabi series switchers. It allows the users to build a compact, virtual studio system comprised of a large number of cameras and small number of CG/combine processors. This software has been designed to allow operation that simulates regular switchers as much as possible even when linked to the digiStorm Virtual Studio.

1-2. Features

- A compact virtual studio system can be built using a small number of CG generators and video combine processors (called hereafter the "virtual processors") and DSC-100 / DSC-200 (camera sensor data control processor).
- Camera switching of virtual combine images can be made by XPT of the M/E bus in the same way as regular switchers.
- > A Hanabi built-in chromakey is available in the Hanabi Virtual Link System.
- > The Hanabi built-in chromakey can follow the camera switching (The switcher can preserve chromakey data for each camera and switch it according to the M/E XPT switchover.)
- If the virtual processor cannot generate a combine image due to the selection conditions for M/E buses, replacement signals are selected automatically.
- A tally logic function has been added. This enables combining of the video wall display tally and Video wall selection signal tally obtained from the digiStorm Virtual System for output of a suitable Video wall tally.

1-3. About This Manual

In this manual, the basic concepts and terminology are explained in Chapter 2, "Basics of Hanabi Virtual Link System." The specific setting menus are presented starting from Chapter 3. The basic concepts and terminology in Chapter 2 must be grasped to understand the information starting from Chapter 3. Therefore, be sure to read through Chapter 2 first.

2. Basics of Hanabi Virtual Link System

2-1. Ideal Virtual System

In the ideal virtual system, the camera and virtual video and CG processors are connected one-to-one as shown in the figure below. This configuration has the following advantages.

- The PGM output, NEXT output, monitor environments, and camera operator preview can all be obtained without conflicts.
- Switching can be made between any input signals using "Dissolve".
- Ease of operation and wiring concepts for switcher peripherals are basically identical to typical studio operation and are easy to understand.

However, this configuration entails high cost.

Ideal Virtual Studio System

2-2. Hanabi Virtual Link System (Video)

Hanabi Virtual Link System enables configuration of a virtual studio at low cost using a small number of virtual video and CG processors (called hereafter the "virtual processors".). An example of a virtual linkage system configuration using the Hanabi switcher and two virtual processors is shown below.

This system configuration has the following features.

- PGM and PVW virtual combine image systems are obtained, and switching can be made between two virtual cameras using "Dissolve".
- Camera operator previews must be fed from the PGM or NEXT output.

2-2-1. Using External Chromakey

The basic configuration operates in the following way.

- 1) The selected camera input signals are sent to AUX1 and AUX2 respectively.
- 2) The AUX1 and AUX2 outputs go to camera inputs of the virtual processors.
- 3) CG generation and CK/DSK combining are performed within the virtual processors and returned to the Hanabi switcher.

HANABI Virtual Link System (Video)

2-2-2. Using Internal Chromakey

The basic configuration operates in the following way.

- 1) The selected camera input signal is sent to AUX1.
- 2) The AUX1 output is looped back to the Hanabi switcher to use as a chromakey source video.
- 3) The CG input from the virtual processor and the CK are combined within the virtual processors

HANABI Virtual Link System (Video)

* Only one Hanabi chromakeyer is available in this system

2-3. Hanabi Virtual Link System (Sensor)

In the virtual studio, CG is constantly linked to the camera. As a result, CG must be switched in synchronization with camera switching by the Hanabi switcher. Therefore, the following functions are necessary.

- The Hanabi switcher must output the tally data.
- In the virtual system the camera data should be switched when the tally data is received.

Switching of the camera data is performed by DSC-100/200. The DSC-100/200 and Hanabi switcher communicate over an RS422 connection for realizing the functions above.

2-4. Usage and Ease of Operation Resembling Regular Systems

2-4-1. Virtual Line

In Chapter 2-2, "Hanabi Virtual Link System (Video)," the basic configuration of the virtual system was presented as shown below.

- 1) The virtual processor is selected using the M/E Xpts.
- 2) AUX1 and AUX2 select camera signals.
- 3) When using internal chromakey, Chromakey ON/OFF setting is controlled by the virtual system.

The switcher must also handle elements besides the virtual elements, and so the load is larger. Also, the tally requires a logic circuit between AUX1/2 and M/E bus, and this gives the system added complexity.

In the Hanabi switcher, the concept of the **Virtual Line** was introduced to provide easier operation. The Hanabi switcher already has available signal sources within it: IN01 to IN28, STILL1 to STILL4, and MATT. The Virtual Link software allows the user to add more 16 sources called Virtual Line: VR01 to VR016. (See the framed section in the figure below). When **VR01 to VR16** is selected, the following operations are performed automatically.

- 1) The AUX buses select camera signals.
- 2) The M/E buses select virtual sources.
- 3) The keyer is set to ON or OFF and the chromakey data is switched corresponding to the selected camera when the Hanabi built-in chromakey is used.
- 4) The related tally output is generated.

The concept of the **Virtual Line** enables virtual linkage by simply selecting a crosspoint of the M/E using regular operation.

External CK is used in the HANABI Virtual Link System (VIRTUAL LINE / COMPONENTS)

2-4-2. Virtual Component / Dummy XPT

To realize the Virtual Line concept, the function module which generates the virtual video is managed under the name **Virtual Component** in the Hanabi switcher. The **Virtual Component** requires the following settings.

- What type is this module?
- (Whether the Hanabi built-in chromakey is used or not.)
- What is the delay when passing through this module?
- How is this module assigned and managed in the Hanabi switcher?

Fewer **VIRTUAL COMPONENTS** in the system results in more operating restrictions. For example, what happens when the following selections are made in a system with two virtual processors?

- VR01 is selected in the M/E2-A bus
- VR02 is selected in the M/E2-B bus
- VR03 is selected in the M/E1-A bus
- VR04 is selected in the M/E1-B bus

Four different virtual sources are selected, but these selections are not possible since there are only two virtual processors in this virtual system. In this case, the **Priority** for each bus should be determined. If the priority for M/E2 is set higher, for example, some other signal (in most cases, raw camera video) must be output from M/E1 so that the virtual video is output from M/E2. This "some other signal assignment" is called **Dummy XPT (Crosspoint)**.

HANABI Virtual Link System (VIRTUAL Components & DUMMY XPTs)

2-4-3. Camera Number and Tally Data (Serial Tally)

During studio operation, numbers are normally assigned to each camera. These camera numbers and their usage may change from program to program.

In the Virtual System, both the camera video and sensor wiring must be taken into account. It is more convenient if these changes can be made by the software rather than by the actual wiring. To realize this, Hanabi Virtual Link System prepares the virtual system setup menu in the Hanabi switcher where **Virtual Camera Numbers** can be set.

• The camera "X" actually uses sensor "Y" through the IN "Z" signal.

These types of setting changes can only be made using the software.

In this case, the **Tally Data (serial tally)** determines which sensor is used. The tally data that is set here is sent to DSC-100/200, and the sensor data is switched in synchronization with the video.

2-4-4. Virtual Crosspoint

Finally, the actual wiring, camera numbers mentioned before, and the virtual concept known as the Component need to be linked together. The **Virtual XPT (Crosspoint)** is used to make these settings. It makes the following settings.

- Is the IN " X " signal for camera? Is it a Virtual Component? Is it a signal unrelated to the virtual system?
- Is AUX "Y" assigned to the Virtual Component?
- Which serial tally is related to which Virtual Component?

Thus, the Virtual XPT can be considered to define the wiring on the hardware system.

3. Select a Virtual System Preset

The Hanabi Virtual Link System prepares six system setup presets of the Virtual System (up to four cameras) for configuring the virtual system quickly and easily. Select and use a preset according to your system needs.

This chapter explains the details of each preset, how to select a virtual preset and how to complete the system setup with the preset. After applying the preset, you can manually customize the preset setup suitable for your system by using other VIRTUAL menus. (See 4. "Virtual System Manual Setup".)

3-1. Select a Preset in the Virtual Menu

- 1) Press the FUNC button in the Menu Select section. The FUNCTION SETUP menu opens.
- 2) Turn F1 to select VIRTUAL and then press F1. The VIRTUAL top menu as shown below opens.

FUNCTION		VIRTUAL			
1.SYSTEM	6.ST	ANDARD			
2.LINE					
3.CAMERA					
4.COMPONENT					
5.CROSS POINT					
SELECT	-	_I I		 I	
6	l I		I	l l	

3) Turn F1 to select STANDARD and then press F1. The VIRTUAL - STANDARD menu as shown below opens.

- 4) Six virtual presets are available. (See section 3-2 "Details of Virtual Preset1-6" for details about each preset.) Turn F1 to select a preset and then press F1. A beep sound will be heard and the settings will be loaded to the swithcer.
- 5) Reboot your Hanabi swithcer MU.
- 6) See Virtual Preset1-6 in section 3-2."Details of Virtual Preset1-6" for how to configure the system and finish the setup. See section 3-2-8."List of Virtual Preset Setting Values" for the preset values of each preset.

3-2-1. Virtual Preset 1

VCG CAM×4 COMP×1 BUS=M/E1 CK=INT

Preset1 is used to create a full virtual video, such as a person appeared in the computer graphics background by using a chromakey as shown below. The chromakey feature (KEY2) on the Hanabi switcher is used for combining video images.

Input the BKGD image (CG) to INPUT5.

Use KEY2 to display the chromakey image (camera1-4) on the CG. Switch the camera (chromakey) image with the M/E bus buttons 1-4.

Virtual composite image (Switcher PGM out of M/E1 bus)

- The virtual composite video is assigned only to the M/E1 bus. If you want to use the virtual composite video in the M/E2 bus, use the M/E re-entry feature.
- The Virtual Line 1 to 4 are assigned to (Camera 1 to 4) the bus button 1 to 4 respectively

System Setup Procedure

1) Make input and output signal connections of the system as shown in the table below.

			Switcher c	onnection	Bus Assignment	
No.	Signal	Description	Switcher side (Connector)	Destination	Signal name	Bus button
1	CAM1 to 4	Live camera signals used as virtual lines.	INPUT1 INPUT2 INPUT3 INPUT4	Camera 1 Camera 2 Camera 3 Camera 4	VR01 VR02 VR03 VR04	1 2 3 4
2	Camera image sent to Delay Line	Selected camera image used for virtual composition. A delay time will be added to it for compensating CG rendering time.	AUX1	Delay Line In	-	-
3	CK source video	Delayed camera image. This image becomes the foreground of virtual composite image by chromakeying.	INPUT7	Delay Line Out	IN07	-
4	CG Fill for composite video	Computer graphics image (key fill video) generated in the CG processor. This image becomes the background of virtual composite image.	INPUT5	CG Processor Out (Fill)	IN05	-
5	CG Key for composite video (*See below)	Computer graphics image (key cut video) generated in the CG processor. This image is used for the garbage mask key of virtual composite image.	INPUT6	CG Processor Out (Key)	IN06	-
6	VTALY	Camera tally signal to be sent to the CG processor via RS-422.	RS422 Port 5	HVS-TALLY port of DSC-100/ 200	-	-

When using garbage mask, **CG Key** (garbage mask signal) must be **advanced by one frame** from CG Fill by adding a delay to the CG fill signal.

- 2) Select VCG CAM × 4 COMP × 1 BUS=M/E1 CK=INT in the VIRTUAL STANDARD menu. Press F1 to apply Virtual Preset 1 to the switcher.
- 3) Reboot the switcher (MU).
- Once the preset is applied to the switcher, four cameras are assigned as virtual lines. If you use three or less cameras, the fourth camera or more should be unassigned. (Refer to section 3-2-7. "Additional Setting".)
- 5) The delay time for matching virtual link timing varies by the CG processor rendering time. Check your system and set the suitable delay time at the DELAY item in the VIRTUAL -COMPONENTmenu. (See section 4-6. Virtual Component Setting".)

6) If you want to use garbage mask, make the setup for KEY2 and KEY3 as shown below.

KEY2 MASK TYPE:	KEY3_A
KEY2 MASK INVERT:	ON
KEY3 SOURCE SIGNAL:	IN06

- 7) Press the bus button 1 on the M/E1 bus to send the virtual line video to the PGM out, display KEY2 on it and adjust the chromakey. Repeat the same procedure for the remaining virtual line video by pressing 2 to 4 respectively on the M/E1 bus.
- 8) If you want to change settings manually in addition to this setup, refer to section 4. "Virtual System Manual Setup."

VCG CAM×4 COMP×1 BUS=M/E1/2 CK=INT

The setup setting of **Preset 2** is **almost the same as** that of **Preset 1**. However the virtual processing can be also performed on the M/E2 bus directly. (Note that only one virtual composite image can be processed at the same time in both M/E1 and M/E2 because there is only one CG processor in the system.)

- Adjust the chromakey by pressing the bus button 1 on the M/E1 bus to send the virtual line video to the PGM out and displaying KEY2 on it. Repeat the same procedure for the remaining virtual line video (bus button 2 to 4). Repeat the same procedure in the M/E2 bus.
- Other system setup procedure is **same as** that of **Preset 1**.

3-2-3. Virtual Preset 3

VCG CAM×4 COMP×1 BUS=M/E1 CK=EXT

Preset3 is used to create a full virtual video by using a chromakey same as Preset1. However, the chromakey feature on a virtual processor such as the VRP series processor is used for combining video images.

- The virtual composite video is assigned only to the M/E1 bus. If you want to use the virtual composite video in the M/E2 bus, use the M/E re-entry feature.
- The Virtual Line 1 to 4 are assigned to (Camera 1 to 4) the bus button 1 to 4 respectively
 The chromakey is adjusted in the virtual processor
- The chromakey is adjusted in the virtual processor.
- The same chromakey adjustment is used for all camera images (1 to 4) in this system.
- The virtual composition is performed in the virtual processor.

System Setup Procedure

1) Make input and output signal connections of the system as shown in the table below.

			Switche	er connection	Bus Assignment		
No.	Signal	Description	Switcher side (Connector)	Destination	Signal name	Bus button	
1	CAM1 to 4	Live camera signals used as virtual lines.	INPUT1 INPUT2 INPUT3 INPUT4	Camera 1 Camera 2 Camera 3 Camera 4	VR01 VR02 VR03 VR04	1 2 3 4	
2	Camera image for virtual composition	Selected camera image used for virtual composition.	AUX1	Camera IN of the virtual processor such as VRP.	-	-	
3	Virtual composite image	Virtual composite image sent from the virtual processor such as VRP.	INPUT5	Mixed image OUT of the virtual processor such as VRP.	IN05	-	
4	VTALY	Camera tally signal to be sent to the CG processor via RS-422.	RS422 Port 5	HVS-TALLY port of DSC-100/200	-	-	

- 2) Select VCG CAM×4 COMP×1 BUS=M/E1 CK=EXT in the VIRTUAL STANDARD menu. Press F1 to apply Virtual Preset 3 to the switcher.
- 3) Reboot the switcher (MU).

- 4) Once the preset is applied to the switcher, four cameras are assigned as virtual lines. If you use three or less cameras, the fourth camera or more should be unassigned. (Refer to section 3-2-7. "Additional Setting".)
- 5) The delay time for matching virtual link timing varies by the CG processor rendering time. Check your system and set the suitable delay time at the DELAY item in the VIRTUAL -COMPONENT menu. (See section 4-6. Virtual Component Setting".)
- 6) If you want to change settings manually in addition to this setup, refer to section 4. "Virtual System Manual Setup."

3-2-4. Virtual Preset 4

CG CAM×4 COMP×1 BUS=M/E1/2 CK=EXT

The setup setting of **Preset 4** is **almost the same as** that of **Preset 3**. However the virtual processing can be also performed on the M/E2 bus directly. (Note that only one virtual composite image can be processed at the same time in both M/E1 and M/E2, because there is only one CG processor in the system.)

• System setup procedure is **same as** that of **Preset 3**.

3-2-5. Virtual Preset 5

CG CAM×4 COMP×1 BUS=M/E1 CK=INT

Preset5 is used to create a virtual video in real-time computer graphics (RCG) mode, such as a computer-generated plane graphic (line, circle or arrow, for example) overlaid on a live camera feed. The keyer (KEY2) on the Hanabi switcher is used for downstream keying.

Background video is the delayed camera image.

Use KEY2 (CG image) to display the circle.

Virtual composite image (Switcher PGM out of M/E1 bus)

- The virtual composite video is assigned only to the M/E1 bus. If you want to use the virtual composite video in the M/E2 bus, use the M/E re-entry feature.
- The Virtual Line 1 to 4 are assigned to (Camera 1 to 4) the bus button 1 to 4 respectively

System Setup Procedure

1) Make input and output signal connections of the system as shown in the table below.

No Signal		Description	Switcher co	onnection	Bus Assignment	
NO.	Signal	Description	Switcher side (Connector)	Destination	Signal name	Bus button
1	CAM1 to 4	Live camera signals used as virtual lines.	INPUT1 INPUT2 INPUT3 INPUT4	Camera 1 Camera 2 Camera 3 Camera 4	VR01 VR02 VR03 VR04	1 2 3 4
2	Camera image sent to Delay Line	Selected camera image used for virtual composition. A delay time will be added to it for compensating CG rendering time.	AUX1	Delay Line In	-	-
3	CG Fill for composite video	Computer graphics image (key fill video) generated in the CG processor. This image becomes the foreground (KEY2 Insert) of virtual composite image.	INPUT5	CG Processor Out (Fill)	IN05	-
4	Camera image for composite video	Delayed camera image. This image becomes the background of virtual composite image.	INPUT7	Delay Line Out	IN07	-
5	CG Key for composite video	Computer graphics image (key cut video) generated in the CG processor. This image becomes the foreground (KEY2 Source) of virtual composite image.	INPUT6	CG Processor Out (Key)	IN06	-
6	VTALY	Camera tally signal to be sent to the CG processor via RS-422.	RS422 Port 5	HVS-TALLY port of DSC-100/ 200	-	-

- 2) Select CG CAM×4 COMP×1 BUS=M/E1 CK=INT in the VIRTUAL STANDARD menu. Press F1 to apply Virtual Preset 5 to the switcher.
- 3) Reboot the switcher (MU).
- 4) Once the preset is applied to the switcher, four cameras are assigned as virtual lines. If you use three or less cameras, the fourth camera or more should be unassigned. (Refer to section 3-2-7. "Additional Setting".)
- 5) Press the desired button (1 to 4) on the M/E1 bus to send the virtual line video to the PGM out and display KEY2 on it respectively.
- 6) The delay time for matching virtual link timing varies by the CG processor rendering time. Check your system and set the suitable delay time at the DELAY item in the VIRTUAL -COMPONENTmenu. (See section 4-6. Virtual Component Setting".)
- 7) If you want to change settings manually in addition to this setup, refer to section 4. "Virtual System Manual Setup."

3-2-6. Virtual Preset 6

CG CAM×4 COMP×1 BUS=M/E1/2 CK=INT

The setup setting of **Preset 6** is **almost the same as** that of **Preset 5**. However the virtual processing can be also performed on the M/E2 bus directly. (Note that only one virtual composite image can be processed at the same time in both M/E1 and M/E2, because there is only one CG processor in the system.)

• System setup procedure is **same as** that of **Preset 5**.

3-2-7. Additional Setting

If you have selected a desired preset from **Virtual Preset1 to 6**, the preset setting has applied to your system following the procedure in the previous sections and your system has four cameras, your virtual standard setup is now finished.

If your system has three or less cameras, make the additional settings as shown below.

VIRTUAL - LINE Menu Setting

Once **Virtual Preset** is applied to the switcher, the ENABLE item for LINE NO VR01 to VR04 (corresponding to Camera 1 to 4) in the VIRTUAL - LINE menu are all changed to ON. Leave the ENABLE item to ON for the cameras used in the system and set to OFF for the cameras not used in the system. (See section 4-4-2. "Virtual Line Advanced Setting" and section 3-2-8."List of Virtual Preset Setting Values".)

For example, if you have two cameras, leave ENABLE to ON for VR01 and VR02 and change to OFF for VR03 and VR04. (See section 4-4-2. "Virtual Line Advanced Setting" and section 3-2-8. "List of Virtual Preset Setting Values".)

Ex.) If your system has two cameras:

OU SETUP - BUS ASSIGN Menu Setting

Once **Virtual Preset** is applied to the switcher, VR01 to VR04 are assigned to the bus buttons 1 to 4 respectively. Change the virtual line bus assignment for the camera inputs not used in the system.

For example, if you have two cameras, change the bus assignment of Button 3 and Button 4 to other signals such as IN03 and IN04.

(See section 4-9."Assignment of Virtual Line to M/E Bus Button."

Ex.) If your system has two cameras:

OU SETL	JP	- BUS CONT	ΓROL(1/2) – – – - ·		OU SETL	JP	- BUS CON	ITROL(1/2)		
1	VR01	VR1V	OFF	OFF	1	VR01	VR1V		OFF	OFF
3	VR02 VR03	VR2V VR3V	OFF	OFF	$\frac{2}{3}$	IN03	<u>VR2</u> V IN03		OFF	
4	VR04	VR4V	OFF	OFF	4	IN04	IN04		OFF	OFF
BUTTON	IN05 SIGNAL VR01	IN05 NAME VR1V	OFF INHIBIT OFF	OFF ENABLE OFF	5 BUTTON 3	IN05 SIGNAL IN03	IN05 NAME I IN03		OFF INHIBIT OFF	OFF_ ENABLE OFF

3-2-8. List of Virtual Preset Setting Values

■ VIRTUAL - SYSTEM menu

Preset1 - Preset6								
ENABLE	DELAY	DUMMY XPT						
ON	0	BLAK						

PRIORITY						
NO	BUS					
1	M2PGM					
2	M2PST					
3	M1PGM					
4	M1PST					

_

■ VIRTUAL - LINE menu

Preset1 / Preset2											
NO		DUMMY		EXT C	OMPO	INT C	OMPO				
NO	LINADLL	XPT		TYPE	SELECT	TYPE	SELECT				
VR01	ON	IN01	1	DLCG	BG	CK	FG				
VR02	ON (*1)	IN02	2	DLCG	BG	CK	FG				
VR03	ON (*1)	IN03	3	DLCG	BG	CK	FG				
VR04	ON (*1)	IN04	4	DLCG	BG	CK	FG				
VR05-16	OFF	BLAK	1	DLCKCG	BG	OFF	OFF				

Preset3 / Preset4											
NO				EXT C	OMPO	INT C	OMPO				
NO				TYPE	SELECT	TYPE	SELECT				
VR01	ON	IN01	1	DLCKCG	BG	OFF	OFF				
VR02	ON (*1)	IN02	2	DLCKCG	BG	OFF	OFF				
VR03	ON (*1)	IN03	3	DLCKCG	BG	OFF	OFF				
VR04	ON (*1)	IN04	4	DLCKCG	BG	OFF	OFF				
VR05-16	OFF	BLAK	1	DLCKCG	BG	OFF	OFF				

Preset5 / Preset6											
NO		DUMMY		EXT C	OMPO	INT C	OMPO				
NO	IO ENABLE XPT		CAMERA	TYPE	SELECT	TYPE	SELECT				
VR01	ON	IN01	1	DLCG	FG	CK	BG				
VR02	ON (*1)	IN02	2	DLCG	FG	CK	BG				
VR03	ON (*1)	IN03	3	DLCG	FG	CK	BG				
VR04	ON (*1)	IN04	4	DLCG	FG	CK	BG				
VR05-16	OFF	BLAK	1	DLCKCG	BG	OFF	OFF				

(*1) Set to OFF for the unused lines if your system has three or less cameras.

VIRTUAL - CAMERA menu

Preset1 - Preset6				
NO	TALLY DATA			
1	1			
2	2			
3	3			
4	4			
5	5			
6	6			
7	7			
8	8			

VIRTUAL - COMPONENT menu

Preset1						
	NO	TVDE		ASSIGN		
	NO	TIFE DELAT		TYPE	SHARE	
EXT	1	DLCG	6	FR1ALL	NON	
EXT	2-16	OFF	0	FR ALL	ALL	
INT	1	CK	2	FR1ALL	NON	
INT	2	OFF	2	FR2ALL	NON	

Preset2						
			ASS	SIGN		
			DELA	TYPE	SHARE	
EXT	1	DLCG	6	FR ALL	BUS	
EXT	2-16	OFF	0	FR ALL	ALL	
INT	1	CK	2	FR1ALL	NON	
INT	2	CK	2	FR2ALL	NON	

Preset3					
FXT/INT	NO	IO TYPE DELAY -		ASS	IGN
				TYPE	SHARE
EXT	1	DLCKCG	6	FR1ALL	NON
EXT	2-16	OFF	0	FR ALL	ALL
INT	1	OFF	2	FR1ALL	NON
INT	2	OFF	2	FR2ALL	NON

Preset4						
EXT/INT	NO	TVDE		ASSIGN		
	NO	TIFE DELAT		TYPE	SHARE	
EXT	1	DLCKCG	6	FR ALL	ALL	
EXT	2-16	OFF	0	FR ALL	ALL	
INT	1	OFF	2	FR1ALL	NON	
INT	2	OFF	2	FR2ALL	NON	

Preset5						
FXT/INT	NO	TVDE		ASSIGN		
				TYPE	SHARE	
EXT	1	DLCG	4	FR1ALL	NON	
EXT	2-16	OFF	0	FR ALL	ALL	
INT	1	CK	2	FR1ALL	NON	
INT	2	OFF	2	FR2ALL	NON	

Preset6						
	NO	TVDE		ASSIGN		
	NO		DELAI	TYPE	SHARE	
EXT	1	DLCG	4	FR ALL	BUS	
EXT	2-16	OFF	0	FR ALL	ALL	
INT	1	CK	2	FR1ALL	NON	
INT	2	CK	2	FR2ALL	NON	

■ VIRTUAL - CROSSPOINT menu

Preset1 / Preset2 / Preset5 / Preset6

INPUT				
NAME	TYPE	NAME		
IN01	CAM	1		
IN02	CAM	2		
IN03	CAM	3		
IN04	CAM	4		
IN05	BG	1		
IN06	KEY	1		
IN07	FG	1		
IN08-16	OFF			

AUX				SERIAL	TALLY
NAME	DESTINATION			NAME	COMP
AUX01	COMPO	COMPO COMPO1		VR1-1	1
AUX02-10	OFF		ĺ	VR1-2	1
			_	VR2-1	OFF
				VR2-2	OFF

Preset3 / Preset4						
	INPUT					
NAME	TYPE	NAME				
IN01	CAM	1				
IN02	CAM	2				
IN03	CAM	3				
IN04	CAM	4				
IN05	OFF					
IN06	OFF					
IN07	BG	1				
IN08-16	OFF					

		SERIA			
NAME	DESTINATION			NAME	
AUX01	COMPO	COMPO1	1	VR1-1	Ī
AUX02-10	OFF		1	VR1-2	Ī
			-	VR2-1	Г

SERIAL TALLY					
NAME	COMP				
VR1-1	1				
VR1-2	1				
VR2-1	OFF				
VR2-2	OFF				

4. Virtual System Manual Setup

The Hanabi Virtual Link System has great flexibility to allow users to make virtual setup in any systems by using VIRTUAL 1 to 5 menus in the Hanabi switcher.

4-1. Access to Virtual Setting Menu

The menu for making the switcher virtual system settings can be accessed by the following procedure.

- 1) Press the FUNC button in the menu select section. The FUNCTION SETUP menu opens.
- 2) Turn F1 to select VIRTUAL and then press F1. The VIRTUAL top menu as shown below opens. Use VIRTUAL 1 to 5 menus for manual setup.

FUNCTION	VIRTUAL		
1.SYSTEM	6.STANDARD		
2.LINE			
3.CAMERA			
4.COMPONENT			
5.CROSS POINT			
SELECT	L _I I I		
1		1	l
		i I	

4-2. Menu Overview

The concepts described in Chapter 2, "Basics of Hanabi Virtual Link System," are provided in the following menu format.

- Virtual System Setup Menu
- 1) SYSTEM menu
 - Enables/Disables Virtual Link.
 - Sets bus priority.

2) LINE menu

- Select a camera to be used.
- Sets a signal for Dummy XPT.
- Selects virtual component type and signal.
- 3) CAMERA menu
 - Select a camera tally data.
- 4) COMPONENT
 - Select a virtual component and sets its type.
 - Sets the virtual component delay.
 - Selects virtual components to the Hanabi M/E bus and sets their signal sharing method.
- 5) CROSSPOINT
 - Sets input signal type by selecting from camera raw video, virtual component or other no virtual related signal.
 - Selects AUX buses used for virtual component signal output
 - Sets which virtual component uses which tally data.

4-3. Virtual System Menu

In this menu, the basic settings are made for the Virtual System.

FUNCTIO	N VIRTUAI DELAY	L SYS DAMMY XPT	STEM -	 	
ON	0	BLACK			
PRIO NO 1	RITY BUS M1ABUS			 	

Parameter	r	Setting Range	Description
ENABLE		ON/OFF	Enables/Disables Virtual Link.
DELAY		0 to 10	Sets an overall delay needed for virtual link.
			A DELAY setting is also provided in the VIRTUAL COMPONENT menu (to be described later). If the delay of the VIRTUAL SYSTEM menu is set to "0", the delay setting in the VIRTUAL COMPONENT menu is used. Otherwise, the delay setting of the VIRTUAL SYSTEM menu is used. Normally, make delay setting at the VIRTUAL COMPONENT menu, leaving the delay at the VIRTUAL SYSTEM menu to "0."
DUMMY XPT		Signal names	Sets an overall Dummy XPT signal.
set in th menu of SETUP		set in the INPUT menu of MU SETUP	A DUMMY XPT setting is also provided in the VIRTUAL LINE menu (to be described later). If a signal is not defined in the VIRTUAL LINE menu, the DUMMY XPT setting of this menu is used.
			* When the Virtual Link is enabled in the Hanabi switcher, alternative signal is required instead of the real virtual signal because of the limited system configuration. Dummy XPT is used for this alternative signal assignment.
PRIORITY N	0	1 to 4	When each bus vies for limited Virtual Components
B	US	M1ABUS	priority when displayed.
	M1BBUS M1PGM M1PST M2ABUS M2BBUS M2BCM	M1BBUS M1PGM M1PST M2ABUS	Selects two each from the M/E1 bus and the M/E2 bus, used for virtual component assignments under the "BUS" item and sets their priority under the "NO" item. The number 1 is given the highest priority. The following buses are available.
		Generally, the following settings are used.	
		M2PST	PRIORITY NO 1 = M2 PGM PRIORITY NO 2 = M2 PST
			PRIORITY NO 3 = M1 PGM PRIORITY NO 4 = M1 PST

4-4. Virtual Line Menu

The virtual signal stream for realizing virtual link in the Hanabi switcher is called the "**Virtual Line**" as described in the Chapter 2-4-1.

4-4-1. Virtual Line Name Setting

The Virtual Line can be handled as an input signal resource in the same way as the regular BLACK, IN01 to IN28, STILL1 to STILL4, and MATT signals, and names can be also assigned in the same way as other signals. Signals are available from VR01 to VR16.

The name setting operation for Virtual Line is the same as the regular switcher operation.

- 1) Press the MU SETUP button to select the INPUT menu.
- 2) Use SIGNAL to make a selection from VR01 to VR16.
- 3) Press F2 to start changing the name of signal. The signal names must be one or two words of up to 4 characters. Change the name on a character-by-character basis. First, select a position to be changed by turning F2 at RENAME. And then select a character by turning F4 at CHARA. The names should be in alphabet, numbers and symbols (ASCII characters) only. To switch among alphabet, number and symbol inputs, press F3 under the CHANGE item.
- 4) After the input is finished, press F2 to confirm the changed name.

The name "VR1V" is given to the Virtual Line VR01 in the menu example below.

MUSETUP INP	UT	
STL2 STL2	MATT1	MAT1
STL3 STL3	MATT2	MAT2
STL4 STL4	ME	ME
СВ СВ	VR01	VR1V
WHITE WHITE	VR02	VR2 LINE
SIGNAL RENAME CHANGE VR01 4 BIG	CHARA 'V'	

The Virtual Line can be selected as a signal in the MU SETUP - INPUT menu. A total of 16 signals from VR01 to VR16 are available.

The names set here are used in all subsequent settings.

4-4-2. Virtual Line Advanced Setting

In this menu, the Virtual Line advanced settings are made.

FUNCTIO	N VIRTUAI	_ LINE	E	
LINE	ENABLE	DUMMY	CAMERA	
NO		XPT		
VR01	OFF	BLAK		I
EXT CO	OMPO		OMPO	
TYPE	SELECT	TYPE	SELECT	
DLCKCG	BG	OFF	OFF	

Par	ameter	Setting Range	Description
NO		(Signal name)	Selects a virtual line by its signal name set in the INPUT menu.
ENABLE		ON/OFF	Enables/Disables the selected virtual line.
DUMMY	ХРТ	(Signal name)	Sets a Dummy XPT signal used for the selected virtual line.
CAMERA		(Camera number)	Select a camera used in the selected virtual line by its number.
EXT COMPO	TYPE	DLCKCG DLCG	Designates the virtual external component type used for the selected virtual line.
		OFF	DLCKCG: Indicates the external chromakeyer is used.
			DLCG: Indicates the internal chromakeyer is used.
	* SELECT	FG BG KEY OFF	Selects a signal assigned to the selected virtual line.
INT COMPO	TYPE	CK OFF	Designates the virtual internal component (Hanabi built-in chromakeyer) type used for the selected virtual line.
			CK Indicates the internal chromakeyer is used.
			OFF Indicates the external chromakeyer is used.
	* SELECT	FG BG KEY OFF	Selects a signal assigned to the selected virtual line.

* When using the Hanabi built-in chromakeyer, the SELECT settings for EXT COMPO and INT COMPO should be different. The signals set for FG, BG and KEY corresponds to the settings set for FG, BG and KEY at the INPUT item in the VIRTUAL CROSSPOINT menu.

4-5. Virtual Camera Setting

In this menu, the Virtual Camera settings are made.

Parameter	Setting Range	Description
NO	1 to 8 (Camera No.)	Selects a virtual camera by its number.
TALLY DATA	0 to 15	Selects the tally data corresponding to the selected camera. This tally data is sent to the camera sensor data control processor (DSC-100/200) where the sensor data is switched in synchronized with the tally.

4-6. Virtual Component Setting

In this menu, the Virtual Component settings are made.

FUNCTION VIRTUAL COMPONENT					
EXT	NO.	TYPE	DELAY	ASS	SIGN
/INT		i i		TYPE	SHARE
EXT	1	DLCKCG	0	FR A	BUS

P	arameter	Setting Range	Description
EXT/INT		EXT, INT	Selects INT(internal component) or EXT(external component).
NO	EXT/INT = EXT	1-16	Selects the VIRTUAL COMPONENT number.
	EXT/INT = INT	1-2 (M/E ea.)	Selects the VIRTUAL COMPONENT number.
TYPE	EXT/INT = EXT	DLCKCG	Indicates the external chromakeyer is used.
		DLCG	Indicates the internal chromakeyer is used.
	EXT/INT = INT	CK	Indicates the internal chromakeyer is used.
		OFF	Indicates the external chromakeyer is used.
DELAY	EXT/INT = EXT	0-10	Sets the video delay when passing through the selected Virtual Component in terms of the number of fields. Normally set to the delay for CG.
	EXT/INT = INT	0-10	Sets the video delay when passing through the selected Virtual Component in terms of the number of fields. Normally set to 2 fields, the delay for built-in chromakeyer.

Pa	arameter	Setting Range	Description
ASSIGN	Sets how to assi components are selected in both	gn Virtual Compo used. The SHARI M/E1 and M/E2.	nents to the buses. TYPE sets the buses where the E item sets the behavior when the same Virtual Line is
	TYPE	FR ALL FX1A FX1B FX1PGM FX1PST FX2A FX2B FX2PGM FX2PST FR A FR B FR PGM FR PST FR ME1 FR ME2	Used in all buses. Used in A bus of M/E1 only. Used in B bus of M/E1 only. Used in PGM bus of M/E1 only. Used in PST bus of M/E1 only. Used in A bus of M/E2 only. Used in B bus of M/E2 only. Used in PGM bus of M/E2 only. Used in PST bus of M/E2 only. Used in A bus only. Used in B bus only. Used in PGM bus only. Used in PST bus only. Used in PST bus only. Used in PST bus only. Used in both A and B buses of M/E1. Used in both A and B buses of M/E2.
SHARE BUS		BUS	Same virtual composite image can be shared only in each M/E. When M/E2 has higher priority and same signal is selected both in M/E1-A and M/E2-B, the virtual image same as M/E2-A is output from M/E2-B, while Dummy XPT signal is output from M/E1-A.
		NON	The virtual image is output from the bus with higher priority only. The Dummy XPT signal is always output from the bus with lower priority.
		ALL	Same virtual composite image can be shared for all buses. When M/E2 has higher priority and same signal is selected both in M/E1-A and M/E2-B, the virtual image same as M/E2-A is output from both from ME1-A and M/E2-B.

4-7. Virtual Crosspoint Setting

In this menu, settings are made for the signals that are actually connected to the Hanabi switcher.

FUNCTION VIRTUAL CRO	OSS POINT
INPUT NAME TYPE IN01 OFF 1	AUX NAME DESTINATION AUX01 COMPO COMP01
SERIAL TALLY NAME COMP VR1-1 1	

	Parameter		Setting Range	Description	
INPUT	NAME		(Signal name)	Selects the signal name that is actually connected to the Hanabi switcher.	
	TYPE		OFF	Indicates no virtual related signal.	
			CAM	Indicates virtual camera incoming signal.	
			FG BG	Indicates virtual component signal. Select from FG, BG and KEY.	
			KEY	This parameter corresponds to the SELECT item of the EXT/INT COMPO in the VIRTUAL LINE menu.	
	(Number)	TYPE =CAM	1 to 8 (Camera number)	Selects a virtual camera by its number. The numbers are assigned to cameras in the CAMERA item in the VIRTUAL LINE menu.	
		TYPE =FG, BG, or KEY	1 to 16 (Virtual Component number)	Selects a virtual component signal by its number. The numbers are assigned to the virtual components in the VIRTUAL COMPONENT menu.	
AUX	NAME		Selects an AUX bus.		
	DESTINAT	ION	OFF	Indicates no virtual related bus.	
			COMPO	Indicates that the selected AUX bus is connected to the Virtual Component. In this case, select a component number to be assigned to the selected Virtual Component.	
			MONI		MONI
SERIAL	SERIAL NAME ALLY		Selects a tally s	ignal from VR1-1, VR1-2, VR2-1, and VR2-2.	
TALLY			Up to 4 tally sign single SERIAL	nals (two types of two virtual lines) can flow to a TALLY.	
	COMPO		0 (OFF) 1 to 16	Designates which Virtual Component uses the selected tally.	

4-8. RS422 Setting

In this menu, the serial tally settings sent to the virtual system are made.

The serial tally from the Hanabi switcher is sent to DSC-100/200, where it is analyzed, and then the camera sensor switches in synchronization with video switching.

- RS422 port settings
- 1) Press MU SETUP button to open the MU SETUP menu. Select RS-422 in the MU SETUP menu shown below and then press F1 or DOWN button to go to RS422 menu.

MU SETUP		Ver.1.00.0
1.SYSTEM	6.RS-422	
2.INPUT	7.NETWORK	
3.OUTPUT	8.DATE	
4.MODE		
5.MATT CLIP		
SELECT	·	X-BUFF REBOOT
6		OFF OFF

2) The RS422 menu is displayed. In this example, the serial port connected to DSC-100/200 is set as "VTALLY1". As shown below, the number 4 port is connected to DSC-100/200.

MU SETU	P	R	S-422	
NO.1	EDITOR	ODD	38400	
NO.2	ROUTER	NONE	38400	
NO.3	TALLY	EVEN	38400	
NO.4	VTALLY1	ODD	38400	
NO.5	VTALLY2	ODD	38400	
SELECT NO.1	FUNC	PARITY ODD	BAUD 38400	

3) Next, the RS422 communication format is made in the RS422 menu. Make the following settings for connection with DSC-100/200:

PARITY=ODD BAUD=38400

4-9. Assignment of Virtual Line to M/E Bus Button

After making settings at the MU side, assign the virtual line to the M/E bus button in the Operation Unit (OU).

1) Open the OU SETUP menu and select BUS CTRL.

2) In the BUS CTRL menu, select a bus button under BUTTON. And then select a signal to be assigned to the selected bus button under NAME.

OUSETU	IP	BUS CON	TROL(1/2)
1	VR01	VR1V	OFF
2	VR02	VR2V	OFF
3	VR03	VR3V	OFF
4	VR04	VR4V	OFF
5	VR05	VR5V	OFF
BUTTON 1	VR01	NAME VR1V	INHBIT ENABLE OFF OFF

The setting range of SIGNAL for Virtual LINE is from VR01 to VR16. The signal name that was set to NAME in MU SETUP is displayed.

5. GPI/O and TALLY Setup Menu

When the Hanabi switcher is used in the virtual system, a tally logic circuit is required in many cases. For example, to output a tally for the video wall used in the Virtual System, a logic circuit must be built from the video wall display tally that is output from the Virtual System and the signal tally selected by the AUX bus. In the Hanabi Virtual Link software, the COLOR LOGIC menu is added in the GPI/O&TALLY menu to enable incorporation of the logic circuit in THE Hanabi switcher.

The descriptions below cover only the new COLOR LOGIC menu that was added. For information about other menus, refer to the Hanabi switcher Standard Manual.

5-1. Access to Color Logic Setting Menu

- 1) In the FUNCTION SETUP menu below select **2 GPI/O & TALLY** and then press F1 or DOWN button to open the GPI/O & TALLY menu.
- 2) In the GPI/TALLY menu below select **9 COLOR LOGIC** and then press F1 or DOWN button to open the COLOR LOGIC menu.

FUNCTION	GPI/TALLY	
1.TALLY COLOR	6.TALLY3	
2.GPI IN	7.TALLY4	
3.GPI OUT	8.TALLY5	
4.TALLY1	9.COLOR LOGIC	
5.TALLY2		
SELECT		
9		

3) The COLOR LOGIC menu as shown below is opened.

FUNCTI	ON GPI/T	ALL	Y	COLOR LOO	SIC	
1.	RED	=	POSI	GPI-01	OR	COL09
2.	RED	=	POSI	GPI-02	OR	COL10
3.	OFF	=	POSI			
4.	OFF	=	POSI			
5.	OFF	=	POSI			
NO. 1	SEL RED	1	SEL2 POSI	SEL3 GPO-1	SEL4 OR	SEL5

5-2. COLOR LOGIC Setting Menu

In the COLOR LOGIC menu, logic circuits can be incorporated in the following way.

Conditions: GPO signals (1 to 16) are POSI or NEGA. Logical formula: TARGET_COLOR=TARGET_COLOR <Operator> SRC_COLOR ↓ Available colors: RED/GREEN/COLOR1 to COLOR10 In terms of program language, this is written in the following way: if(Condition=GPO "XX" is POSI or NEGA.) then TARGET_COLOR=TARGET_COLOR and/or/xor SRC_COLOR

In THE Hanabi switcher, the statement above is expressed using the menu shown below.

- NO. Select from 1 to 30.
- SEL1 TARGET COLOR is selected from OFF, RED, GREEN and COL01 to COL10.
- SEL2 The condition (signal polarity) is selected between POSI and NEGA.
- SEL3 The condition (signal) is selected from GPO-01 to GPO-16.
- SEL4 The logical operator when the conditions are met is selected from OR/AND/XOR.
- SEL5 SRC COLOR is selected from NON, RED, GREEN, COL01 to COL10.

5-3. Color Logic Configuration Example

As an example, this section presents simple logic of the virtual video wall tally. As shown in the figure below, this configuration assumes that the following connections were made.

- AUX3 and 4 of the Hanabi switcher are connected to video wall1 and 2 of the virtual processor.
- The display-tallies for video wall1 and 2 are connected to GPI1 and GPI2 of the Hanabi switcher.

Video walls sent from two virtual processors always appear at the same timing in regular virtual operation. Therefore, this has been simplified so that only the tallies for virtual processor 1 are visible.

It is assumed that the tally basic settings are already completed, the suitable red tallies are set for signals other than video wall signals, and that COLOR9, COLOR10, GPO15, and GPO16 are unused.

HANABI Virtual Link System (VideoWall & Tally)

In the conditions above, to configure the video wall tally system the following settings may be required:

- In the TALLY COLOR menu
- 1) Assign AUX3 tally to COLOR9
- 2) Assign AUX4 tally to COLOR10
- In the GPI IN menu
- 3) Assign GPI1 to GPO15
- 4) Assign GPI2 to GPO16

In the COLOR LOGIC menu

5) RED = POSI GPO15 OR COL09 6) RED = POSI GPO16 OR COL10

FUNCTION	ON GPI/T	ALL	Y	COLOR LOG	IC	
1.	RED	=	POSI	GPI-15	OR	COL09
2.	RED	=	POSI	GPI-16	OR	COL10
3.	OFF	=	POSI			
4.	OFF	=	POSI			
5.	OFF	=	POSI			
NO. 1	SEL RED	1	SEL2 POSI	SEL3 GPO-15	SEL4 OR	SEL5 COL09

FOR-A COMPANY LIMITED

Head Office	: 3-8-1 Ebisu, Shibuya-ku, Tokyo 150-0013, Japan
Overseas Division	Phone: +81 (0)3-3446-3936, Fax: +81 (0)3-3446-1470
Japan Branch Offices	: Osaka/Okinawa/Fukuoka/Hiroshima/Nagoya/Sendai/Sapporo
R&D/Production	: Sakura Center/Sapporo Center

FOR-A America Corporate Office

11125 Knott Ave., Suite #A, Cypress, CA 90630, USA Phone: +1 714-894-3311 Fax: +1 714-894-5399

FOR-A America East Coast Office

Suite 650, Two Executive Drive, Fort Lee Executive Park, Fort Lee NJ 07024, USA Phone : +1 (201) 944-1120 Fax : +1 (201) 944-1132

FOR-A America Distribution & Service Center

2400 N.E. Waldo Road, Gainesville, FL 32609, USA Phone: +1 352-371-1505 Fax: +1 352-378-5320

FOR-A Corporation of Canada

425 Queen Street West, Suite 211, Toronto, Ontario M5V 2A5, CANADA Phone: +1 416-977-0343 Fax: +1 416-977-0657

FOR-A Latin America & the Caribbean

5200 Blue lagoon Drive, Suite 760, Miami, FL 33126, USA Phone: +1-305-931-1700 Fax: +1-305-264-7890

FOR-A UK Limited

UNIT C71, Barwell Business Park, Leatherhead Road, Chessington Surrey, KT9 2NY, UK Phone: +44 (0)20-8391-7979 Fax: +44 (0)20-8391-7978

FOR-A Italia S.r.l.

Viale Europa 50 20093, Cologno Monzese (MI), Milan, ITALY Phone: +39 02-254-3635/6 Fax: +39 02-254-0477

FOR-A Corporation of Korea

801 Dangsan Bld., 53-1 Dangsan-Dong, Youngdeungpo-Gu, Seoul 150-800, Korea Phone: +82 (0)2-2637-0761 Fax: +82 (0)2-2637-0760

FOR-A China Limited

Room C302 Tia Hao International Building, 116 Zizhu-Yuan Road, Haidiang Discrict, Beijing, China Phone: +86 (0)10-5170-9870 Fax: +86 (0)10-5170-9772

*The contents of this manual are subject to change without notice.